118 research outputs found

    Nonlinear screening and stopping power in two-dimensional electron gases

    Get PDF
    We have used density functional theory to study the nonlinear screening properties of a two-dimensional (2D) electron gas. In particular, we consider the screening of an external static point charge of magnitude Z as a function of the distance of the charge from the plane of the gas. The self-consistent screening potentials are then used to determine the 2D stopping power in the low velocity limit based on the momentum transfer cross-section. Calculations as a function of Z establish the limits of validity of linear and quadratic response theory calculations, and show that nonlinear screening theory already provides significant corrections in the case of protons. In contrast to the 3D situation, we find that the nonlinearly screened potential supports a bound state even in the high density limit. This behaviour is elucidated with the derivation of a high density screening theorem which proves that the screening charge can be calculated perturbatively in the high density limit for arbitrary dimensions. However, the theorem has particularly interesting implications in 2D where, contrary to expectations, we find that perturbation theory remains valid even when the perturbing potential supports bound states.Comment: 23 pages, 15 figures in RevTeX

    Anharmonic stabilization of the high-pressure simple cubic phase of calcium

    Get PDF
    The phonon spectrum of the high-pressure simple cubic phase of calcium, in the harmonic approx- imation, shows imaginary branches that make it mechanically unstable. In this letter, the phonon spectrum is recalculated using density-functional theory (DFT) ab initio methods fully including anharmonic effects up to fourth order at 50 GPa. Considering that perturbation theory cannot be employed with imaginary harmonic frequencies, a variational procedure based on the Gibbs- Bogoliubov inequality is used to estimate the renormalized phonon frequencies. The results show that strong quantum anharmonic effects make the imaginary phonons become positive even at zero temperature so that the simple cubic phase becomes mechanically stable, as experiments suggest. Moreover, our calculations find a superconducting Tc in agreement with experiments and predict an anomalous behavior of the specific heat.Comment: 5 pages, 3 figure

    Exotic behavior and crystal structures of calcium under pressure

    Full text link
    Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc \rightarrow bcc \rightarrow simple cubic \rightarrow Ca-IV \rightarrow Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is similar to that for Sr. The {\beta}-tin (I41/amd) structure, rather than simple cubic, is predicted to be the theoretical ground state at 0 K and 33-71 GPa. This structure can be represented as a large distortion of the simple cubic structure, just as the higher-pressure phases stable between 71 and 134 GPa. The structure of Ca-V, stable above 134 GPa, is a complex host-guest structure. According to our calculations, the predicted phases are superconductors with Tc increasing under pressure and reaching ~20 K at 120 GPa, in good agreement with experiment

    Quadratic electronic response of a two-dimensional electron gas

    Full text link
    The electronic response of a two-dimensional (2D) electron system represents a key quantity in discussing one-electron properties of electrons in semiconductor heterojunctions, on the surface of liquid helium and in copper-oxide planes of high-temperature superconductors. We here report an evaluation of the wave-vector and frequency dependent dynamical quadratic density-response function of a 2D electron gas (2DEG), within a self-consistent field approximation. We use this result to find the Z13Z_1^3 correction to the stopping power of a 2DEG for charged particles moving at a fixed distance from the plane of the 2D sheet, Z1Z_1 being the projectile charge. We reproduce, in the high-density limit, previous full nonlinear calculations of the stopping power of a 2DEG for slow antiprotons, and we go further to calculate the Z13Z_1^3 correction to the stopping power of a 2DEG for a wide range of projectile velocities. Our results indicate that linear response calculations are, for all projectile velocities, less reliable in two dimensions than in three dimensions.Comment: 17 pages, 5 figures, to appear in Phys. Rev.

    Nesting Induced Peierls-type Instability for Compressed Li-CI16

    Full text link
    Alkalies are considered to be simple metals at ambient conditions. However, recently reported theoretical and experimental results have shown an unexpected and intriguing correlation between complex structures and an enhanced superconducting transition temperature in lithium under pressure. In this article we analyze the pressure induced Fermi surface deformation in bcc lithium, and its relation to the observed cI16 structure. According to our calculations, the Fermi surface becomes increasingly anisotropic with pressure and develops an extended nesting along the bcc [121] direction. This nesting induces a phonon instability of both transverse modes at N, so that a Peierls-type mechanism is proposed to explain the stability of Li-cI16.Comment: Proceedings of Fukuoka 2006 Conference on Novel Pressure-induced Phenomena in Condensed Matter Systems. To be published in J. Phys. Soc. Jpn. 2 pages and 3 figure

    Theoretical study of topological properties of ferromagnetic pyrite CoS<sub>2</sub>

    Get PDF
    Since the discovery of the first topological material 15 years ago, the search for material realizations of novel topological phases has become the driving force of the field. While oftentimes we search for new materials, we forget that well established materials can also display very interesting topological properties. In this work, we revisit CoS2, a metallic ferromagnetic pyrite that has been extensively studied in the literature due to its magnetic properties. We study the topological features of its electronic band structure and identify Weyl nodes and nodal lines, as well as a symmetry-protected fourfold fermion close to the Fermi level. Looking at different surface cleavage planes, we observe both spin polarized Fermi arcs in the majority channel and drumhead states. These findings suggest that CoS2 is a promising platform to study topological phenomena, as well as a good candidate for spintronic applications

    Nonlinear Optical Response of Spin Density Wave Insulators

    Full text link
    We calculate the third order nonlinear optical response in the Hubbard model within the spin density wave (SDW) mean field ansatz in which the gap is due to onsite Coulomb repulsion. We obtain closed-form analytical results in one dimension (1D) and two dimension (2D), which show that nonlinear optical response in SDW insulators in 2D is stronger than both 3D and 1D. We also calculate the two photon absorption (TPA) arising from the stress tensor term. We show that in the SDW, the contribution from stress tensor term to the low-energy peak corresponding to two photon absorption becomes identically zero if we consider the gauge invariant current properly.Comment: we use \psfrag in figur

    Time-dependent density-functional theory approach to nonlinear particle-solid interactions in comparison with scattering theory

    Full text link
    An explicit expression for the quadratic density-response function of a many-electron system is obtained in the framework of the time-dependent density-functional theory, in terms of the linear and quadratic density-response functions of noninteracting Kohn-Sham electrons and functional derivatives of the time-dependent exchange-correlation potential. This is used to evaluate the quadratic stopping power of a homogeneous electron gas for slow ions, which is demonstrated to be equivalent to that obtained up to second order in the ion charge in the framework of a fully nonlinear scattering approach. Numerical calculations are reported, thereby exploring the range of validity of quadratic-response theory.Comment: 14 pages, 3 figures. To appear in Journal of Physics: Condensed Matte

    Spectral and optical properties of Ag3Au(Se2,Te2) and dark matterdetection

    Get PDF
    Paper • The following article is Open access Spectral and optical properties of Ag3Au(Se2,Te2) and dark matter detection M-Á Sánchez-Martínez6,1 , I Robredo6,2,3, A Bidaurrazaga3, A Bergara2,3,4, F de Juan2,5, A G Grushin1 and M G Vergniory7,2,5 Published 29 October 2019 • © 2019 The Author(s). Published by IOP Publishing Ltd Journal of Physics: Materials, Volume 3, Number 1 Focus on Topological Matter Citation M-Á Sánchez-Martínez et al 2020 J. Phys. Mater. 3 014001 Download Article PDF Figures References 692 Total downloads 4 4 total citations on Dimensions. Turn on MathJax Share this article Share this content via email Share on Facebook Share on Twitter Share on Google+ Share on Mendeley Article information Abstract In this work we study the electronic structure of Ag3AuSe2{\mathrm{Ag}}_{3}{\mathrm{AuSe}}_{2} and Ag3AuTe2{\mathrm{Ag}}_{3}{\mathrm{AuTe}}_{2}, two chiral insulators whose gap can be tuned through small changes in the lattice parameter by applying hydrostatic pressure or choosing different growth protocols. Based on first principles calculations we compute their band structure for different values of the lattice parameters and show that while Ag3AuSe2{\mathrm{Ag}}_{3}{\mathrm{AuSe}}_{2} retains its direct narrow gap at the Γ point, Ag3AuTe2{\mathrm{Ag}}_{3}{\mathrm{AuTe}}_{2} can turn into a metal. Focusing on Ag3AuSe2{\mathrm{Ag}}_{3}{\mathrm{AuSe}}_{2} we derive a low energy model around Γ using group theory, which we use to calculate the optical conductivity for different values of the lattice constant. We discuss our results in the context of detection of light dark matter particles, which have masses of the order of a keV, and conclude that Ag3AuSe2{\mathrm{Ag}}_{3}{\mathrm{AuSe}}_{2} satisfies three important requirements for a suitable detector: small Fermi velocities, meV band gap, and low photon screening. Our work motivates the growth of high-quality and large samples of Ag3AuSe2{\mathrm{Ag}}_{3}{\mathrm{AuSe}}_{2} to be used as target materials in dark matter detectors.We acknowledge support from the European Union's Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement No. 754303 and the GreQuE Cofund programme (MASM). AGG is also supported by the ANR under the grant ANR-18-CE30-0001-01 and the European FET-OPEN SCHINES project No. 829044. MGV acknowledges the IS2016-75862-P national project of the Spanish MINECO. AB acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (FIS2016-76617-P) and the Department of Education, Universities and Research of the Basque Government and the University of the Basque Country (IT756-13)
    corecore